Feature discovery in nfd-worker is performed by a set of separate modules called feature sources. Most of them are specifically responsible for certain domain of features (e.g. cpu). In addition there are two highly customizable feature sources that work accross the system.
Each discovered feature is advertised a label in the Kubernetes Node object. The published node labels encode a few pieces of information:
feature.node.kubernetes.io
feature.node.kubernetes.io
and its sub-namespaces (e.g. vendor.profile.node.kubernetes.io
) are allowed by default--extra-label-ns
command line flag of nfd-mastercpu
).cpuid.AESNI
from cpu).Feature label names adhere to the following pattern:
<namespace>/<source name>-<feature name>[.<attribute name>]
The last component (i.e. attribute-name
) is optional, and only used if a feature logically has sub-hierarchy, e.g. sriov.capable
and sriov.configure
from the network
source.
The -sources
flag controls which sources to use for discovery.
Note: Consecutive runs of nfd-worker will update the labels on a given node. If features are not discovered on a consecutive run, the corresponding label will be removed. This includes any restrictions placed on the consecutive run, such as restricting discovered features with the -label-whitelist option.
The cpu feature source supports the following labels:
Feature name | Attribute | Description |
---|---|---|
cpuid | <cpuid flag> | CPU capability is supported |
hardware_multithreading | Hardware multithreading, such as Intel HTT, enabled (number of logical CPUs is greater than physical CPUs) | |
power | sst_bf.enabled | Intel SST-BF (Intel Speed Select Technology - Base frequency) enabled |
pstate | status | The status of the Intel pstate driver when in use and enabled, either ‘active' or ‘passive'. |
turbo | Set to ‘true' if turbo frequencies are enabled in Intel pstate driver, set to ‘false' if they have been disabled. | |
scaling_governor | The value of the Intel pstate scaling_governor when in use, either ‘powersave' or ‘performance'. | |
cstate | enabled | Set to ‘true' if cstates are set in the intel_idle driver, otherwise set to ‘false'. Unset if intel_idle cpuidle driver is not active. |
rdt | RDTMON | Intel RDT Monitoring Technology |
RDTCMT | Intel Cache Monitoring (CMT) | |
RDTMBM | Intel Memory Bandwidth Monitoring (MBM) | |
RDTL3CA | Intel L3 Cache Allocation Technology | |
RDTL2CA | Intel L2 Cache Allocation Technology | |
RDTMBA | Intel Memory Bandwidth Allocation (MBA) Technology |
The (sub-)set of CPUID attributes to publish is configurable via the attributeBlacklist
and attributeWhitelist
cpuid options of the cpu source. If whitelist is specified, only whitelisted attributes will be published. With blacklist, only blacklisted attributes are filtered out. attributeWhitelist
has priority over attributeBlacklist
. For examples and more information about configurability, see configuration. By default, the following CPUID flags have been blacklisted: BMI1, BMI2, CLMUL, CMOV, CX16, ERMS, F16C, HTT, LZCNT, MMX, MMXEXT, NX, POPCNT, RDRAND, RDSEED, RDTSCP, SGX, SSE, SSE2, SSE3, SSE4, SSE42 and SSSE3.
NOTE The cpuid features advertise supported CPU capabilities, that is, a capability might be supported but not enabled.
Attribute | Description |
---|---|
ADX | Multi-Precision Add-Carry Instruction Extensions (ADX) |
AESNI | Advanced Encryption Standard (AES) New Instructions (AES-NI) |
AVX | Advanced Vector Extensions (AVX) |
AVX2 | Advanced Vector Extensions 2 (AVX2) |
See the full list in github.com/klauspost/cpuid.
Attribute | Description |
---|---|
IDIVA | Integer divide instructions available in ARM mode |
IDIVT | Integer divide instructions available in Thumb mode |
THUMB | Thumb instructions |
FASTMUL | Fast multiplication |
VFP | Vector floating point instruction extension (VFP) |
VFPv3 | Vector floating point extension v3 |
VFPv4 | Vector floating point extension v4 |
VFPD32 | VFP with 32 D-registers |
HALF | Half-word loads and stores |
EDSP | DSP extensions |
NEON | NEON SIMD instructions |
LPAE | Large Physical Address Extensions |
Attribute | Description |
---|---|
AES | Announcing the Advanced Encryption Standard |
EVSTRM | Event Stream Frequency Features |
FPHP | Half Precision(16bit) Floating Point Data Processing Instructions |
ASIMDHP | Half Precision(16bit) Asimd Data Processing Instructions |
ATOMICS | Atomic Instructions to the A64 |
ASIMRDM | Support for Rounding Double Multiply Add/Subtract |
PMULL | Optional Cryptographic and CRC32 Instructions |
JSCVT | Perform Conversion to Match Javascript |
DCPOP | Persistent Memory Support |
The Custom feature source allows the user to define features based on a mix of predefined rules. A rule is provided input witch affects its process of matching for a defined feature. The rules are specified in the nfd-worker configuration file. See configuration for instructions and examples how to set-up and manage the worker configuration.
To aid in making Custom Features clearer, we define a general and a per rule nomenclature, keeping things as consistent as possible.
Additionally to the rules defined in the nfd-worker configuration file, the Custom feature can read more configuration files located in the /etc/kubernetes/node-feature-discovery/custom.d/
directory. This makes more dynamic and flexible configuration easier. This directory must be available inside the NFD worker container, so Volumes and VolumeMounts must be used for mounting e.g. ConfigMap(s). The example deployment manifests provide an example (commented out) for providing Custom configuration with an additional ConfigMap, mounted into the custom.d
directory.
Rule :Represents a matching logic that is used to match on a feature.
Rule Input :The input a Rule is provided. This determines how a Rule performs the match operation.
Matcher :A composition of Rules, each Matcher may be composed of at most one instance of each Rule.
Rules are specified under sources.custom
in the nfd-worker configuration file.
sources:
custom:
- name: <feature name>
value: <optional feature value, defaults to "true">
matchOn:
- <Rule-1>: <Rule-1 Input>
[<Rule-2>: <Rule-2 Input>]
- <Matcher-2>
- ...
- ...
- <Matcher-N>
- <custom feature 2>
- ...
- ...
- <custom feature M>
Specifying Rules to match on a feature is done by providing a list of Matchers. Each Matcher contains one or more Rules.
Logical OR is performed between Matchers and logical AND is performed between Rules of a given Matcher.
Attribute :A PCI attribute.
Element :An identifier of the PCI attribute.
The PciId Rule allows matching the PCI devices in the system on the following Attributes: class
,vendor
and device
. A list of Elements is provided for each Attribute.
pciId :
class: [<class id>, ...]
vendor: [<vendor id>, ...]
device: [<device id>, ...]
Matching is done by performing a logical OR between Elements of an Attribute and logical AND between the specified Attributes for each PCI device in the system. At least one Attribute must be specified. Missing attributes will not partake in the matching process.
Attribute :A USB attribute.
Element :An identifier of the USB attribute.
The UsbId Rule allows matching the USB devices in the system on the following Attributes: class
,vendor
, device
and serial
. A list of Elements is provided for each Attribute.
usbId :
class: [<class id>, ...]
vendor: [<vendor id>, ...]
device: [<device id>, ...]
serial: [<serial>, ...]
Matching is done by performing a logical OR between Elements of an Attribute and logical AND between the specified Attributes for each USB device in the system. At least one Attribute must be specified. Missing attributes will not partake in the matching process.
Element :A kernel module
The LoadedKMod Rule allows matching the loaded kernel modules in the system against a provided list of Elements.
loadedKMod : [<kernel module>, ...]
Matching is done by performing logical AND for each provided Element, i.e the Rule will match if all provided Elements (kernel modules) are loaded in the system.
Element :A CPUID flag
The Rule allows matching the available CPUID flags in the system against a provided list of Elements.
cpuId : [<CPUID flag string>, ...]
Matching is done by performing logical AND for each provided Element, i.e the Rule will match if all provided Elements (CPUID flag strings) are available in the system.
Element :A Kconfig option
The Rule allows matching the kconfig options in the system against a provided list of Elements.
kConfig: [<kernel config option ('y' or 'm') or '=<value>'>, ...]
Matching is done by performing logical AND for each provided Element, i.e the Rule will match if all provided Elements (kernel config options) are enabled (y
or m
) or matching =<value>
in the kernel.
Element :A nodename regexp pattern
The Rule allows matching the node's name against a provided list of Elements.
nodename: [ <nodename regexp pattern>, ... ]
Matching is done by performing logical OR for each provided Element, i.e the Rule will match if one of the provided Elements (nodename regexp pattern) matches the node's name.
custom:
- name: "my.kernel.feature"
matchOn:
- loadedKMod: ["kmod1", "kmod2"]
- name: "my.pci.feature"
matchOn:
- pciId:
vendor: ["15b3"]
device: ["1014", "1017"]
- name: "my.usb.feature"
matchOn:
- usbId:
vendor: ["1d6b"]
device: ["0003"]
serial: ["090129a"]
- name: "my.combined.feature"
matchOn:
- loadedKMod : ["vendor_kmod1", "vendor_kmod2"]
pciId:
vendor: ["15b3"]
device: ["1014", "1017"]
- name: "vendor.feature.node.kubernetes.io/accumulated.feature"
matchOn:
- loadedKMod : ["some_kmod1", "some_kmod2"]
- pciId:
vendor: ["15b3"]
device: ["1014", "1017"]
- name: "my.kernel.featureneedscpu"
matchOn:
- kConfig: ["KVM_INTEL"]
- cpuId: ["VMX"]
- name: "my.kernel.modulecompiler"
matchOn:
- kConfig: ["GCC_VERSION=100101"]
loadedKMod: ["kmod1"]
- name: "my.datacenter"
value: "datacenter-1"
matchOn:
- nodename: [ "node-datacenter1-rack.*-server.*" ]
In the example above:
feature.node.kubernetes.io/custom-my.kernel.feature=true
if the node has kmod1
AND kmod2
kernel modules loaded.feature.node.kubernetes.io/custom-my.pci.feature=true
if the node contains a PCI device with a PCI vendor ID of 15b3
AND PCI device ID of 1014
OR 1017
.feature.node.kubernetes.io/custom-my.usb.feature=true
if the node contains a USB device with a USB vendor ID of 1d6b
AND USB device ID of 0003
.feature.node.kubernetes.io/custom-my.combined.feature=true
if vendor_kmod1
AND vendor_kmod2
kernel modules are loaded AND the node contains a PCI device with a PCI vendor ID of 15b3
AND PCI device ID of 1014
or 1017
.vendor.feature.node.kubernetes.io/accumulated.feature=true
if some_kmod1
AND some_kmod2
kernel modules are loaded OR the node contains a PCI device with a PCI vendor ID of 15b3
AND PCI device ID of 1014
OR 1017
.feature.node.kubernetes.io/custom-my.kernel.featureneedscpu=true
if KVM_INTEL
kernel config is enabled AND the node CPU supports VMX
virtual machine extensionsfeature.node.kubernetes.io/custom-my.kernel.modulecompiler=true
if the in-tree kmod1
kernel module is loaded AND it's built with GCC_VERSION=100101
.feature.node.kubernetes.io/my.datacenter=datacenter-1
if the node's name matches the node-datacenter1-rack.*-server.*
pattern, e.g. node-datacenter1-rack2-server42
Some feature labels which are common and generic are defined statically in the custom
feature source. A user may add additional Matchers to these feature labels by defining them in the nfd-worker
configuration file.
Feature | Attribute | Description |
---|---|---|
rdma | capable | The node has an RDMA capable Network adapter |
rdma | enabled | The node has the needed RDMA modules loaded to run RDMA traffic |
The iommu feature source supports the following labels:
Feature name | Description |
---|---|
enabled | IOMMU is present and enabled in the kernel |
The kernel feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
config | <option name> | Kernel config option is enabled (set ‘y' or ‘m'). Default options are NO_HZ , NO_HZ_IDLE , NO_HZ_FULL and PREEMPT |
selinux | enabled | Selinux is enabled on the node |
version | full | Full kernel version as reported by /proc/sys/kernel/osrelease (e.g. ‘4.5.6-7-g123abcde') |
major | First component of the kernel version (e.g. ‘4') | |
minor | Second component of the kernel version (e.g. ‘5') | |
revision | Third component of the kernel version (e.g. ‘6') |
Kernel config file to use, and, the set of config options to be detected are configurable. See configuration for more information.
The memory feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
numa | Multiple memory nodes i.e. NUMA architecture detected | |
nv | present | NVDIMM device(s) are present |
nv | dax | NVDIMM region(s) configured in DAX mode are present |
The network feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
sriov | capable | Single Root Input/Output Virtualization (SR-IOV) enabled Network Interface Card(s) present |
configured | SR-IOV virtual functions have been configured |
The pci feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
<device label> | present | PCI device is detected |
<device label> | sriov.capable | Single Root Input/Output Virtualization (SR-IOV) enabled PCI device present |
<device label>
is composed of raw PCI IDs, separated by underscores. The set of fields used in <device label>
is configurable, valid fields being class
, vendor
, device
, subsystem_vendor
and subsystem_device
. Defaults are class
and vendor
. An example label using the default label fields:
feature.node.kubernetes.io/pci-1200_8086.present=true
Also the set of PCI device classes that the feature source detects is configurable. By default, device classes (0x)03, (0x)0b40 and (0x)12, i.e. GPUs, co-processors and accelerator cards are detected.
The usb feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
<device label> | present | USB device is detected |
<device label>
is composed of raw USB IDs, separated by underscores. The set of fields used in <device label>
is configurable, valid fields being class
, vendor
, device
and serial
. Defaults are class
, vendor
and device
. An example label using the default label fields:
feature.node.kubernetes.io/usb-fe_1a6e_089a.present=true
See configuration for more information on NFD config.
The storage feature source supports the following labels:
Feature name | Description |
---|---|
nonrotationaldisk | Non-rotational disk, like SSD, is present in the node |
The system feature source supports the following labels:
Feature | Attribute | Description |
---|---|---|
os_release | ID | Operating system identifier |
VERSION_ID | Operating system version identifier (e.g. ‘6.7') | |
VERSION_ID.major | First component of the OS version id (e.g. ‘6') | |
VERSION_ID.minor | Second component of the OS version id (e.g. ‘7') |
NFD has a special feature source named local which is designed for getting the labels from user-specific feature detector. It provides a mechanism for users to implement custom feature sources in a pluggable way, without modifying nfd source code or Docker images. The local feature source can be used to advertise new user-specific features, and, for overriding labels created by the other feature sources.
The local feature source gets its labels by two different ways:
/etc/kubernetes/node-feature-discovery/source.d/
directory. The hook files must be executable and they are supposed to print all discovered features in stdout
, one per line. With ELF binaries static linking is recommended as the selection of system libraries available in the NFD release image is very limited. Other runtimes currently supported by the NFD stock image are bash and perl./etc/kubernetes/node-feature-discovery/features.d/
directory. The file content is expected to be similar to the hook output (described above).NOTE: The minimal image variant only supports running statically linked binaries.
These directories must be available inside the Docker image so Volumes and VolumeMounts must be used if standard NFD images are used. The given template files mount by default the source.d
and the features.d
directories respectively from /etc/kubernetes/node-feature-discovery/source.d/
and /etc/kubernetes/node-feature-discovery/features.d/
from the host. You should update them to match your needs.
In both cases, the labels can be binary or non binary, using either <name>
or <name>=<value>
format.
Unlike the other feature sources, the name of the file, instead of the name of the feature source (that would be local
in this case), is used as a prefix in the label name, normally. However, if the <name>
of the label starts with a slash (/
) it is used as the label name as is, without any additional prefix. This makes it possible for the user to fully control the feature label names, e.g. for overriding labels created by other feature sources.
You can also override the default namespace of your labels using this format: <namespace>/<name>[=<value>]
. If using something else than [<sub-ns>.]feature.node.kubernetes.io
, you must whitelist your namespace using the -extra-label-ns
option on the master. In this case, the name of the file will not be added to the label name. For example, if you want to add the label my.namespace.org/my-label=value
, your hook output or file must contains my.namespace.org/my-label=value
and you must add -extra-label-ns=my.namespace.org
on the master command line.
stderr
output of the hooks is propagated to NFD log so it can be used for debugging and logging.
One use case for the hooks and/or feature files is detecting features in other Pods outside NFD, e.g. in Kubernetes device plugins. It is possible to mount the source.d
and/or features.d
directories common with the NFD Pod and deploy the custom hooks/features there. NFD will periodically scan the directories and run any hooks and read any feature files it finds. The default deployments contain hostPath
mounts for sources.d
and features.d
directories. By using the same mounts in the secondary Pod (e.g. device plugin) you have created a shared area for delivering hooks and feature files to NFD.
User has a shell script /etc/kubernetes/node-feature-discovery/source.d/my-source
which has the following stdout
output:
MY_FEATURE_1
MY_FEATURE_2=myvalue
/override_source-OVERRIDE_BOOL
/override_source-OVERRIDE_VALUE=123
override.namespace/value=456
which, in turn, will translate into the following node labels:
feature.node.kubernetes.io/my-source-MY_FEATURE_1=true
feature.node.kubernetes.io/my-source-MY_FEATURE_2=myvalue
feature.node.kubernetes.io/override_source-OVERRIDE_BOOL=true
feature.node.kubernetes.io/override_source-OVERRIDE_VALUE=123
override.namespace/value=456
User has a file /etc/kubernetes/node-feature-discovery/features.d/my-source
which contains the following lines:
MY_FEATURE_1
MY_FEATURE_2=myvalue
/override_source-OVERRIDE_BOOL
/override_source-OVERRIDE_VALUE=123
override.namespace/value=456
which, in turn, will translate into the following node labels:
feature.node.kubernetes.io/my-source-MY_FEATURE_1=true
feature.node.kubernetes.io/my-source-MY_FEATURE_2=myvalue
feature.node.kubernetes.io/override_source-OVERRIDE_BOOL=true
feature.node.kubernetes.io/override_source-OVERRIDE_VALUE=123
override.namespace/value=456
NFD tries to run any regular files found from the hooks directory. Any additional data files your hook might need (e.g. a configuration file) should be placed in a separate directory in order to avoid NFD unnecessarily trying to execute these. You can use a subdirectory under the hooks directory, for example /etc/kubernetes/node-feature-discovery/source.d/conf/
.
NOTE! NFD will blindly run any executables placed/mounted in the hooks directory. It is the user's responsibility to review the hooks for e.g. possible security implications.
NOTE! Be careful when creating and/or updating hook or feature files while NFD is running. In order to avoid race conditions you should write into a temporary file (outside the source.d
and features.d
directories), and, atomically create/update the original file by doing a filesystem move operation.
This feature is experimental and by no means a replacement for the usage of device plugins.
Labels which have integer values, can be promoted to Kubernetes extended resources by listing them to the master -resource-labels
command line flag. These labels won't then show in the node label section, they will appear only as extended resources.
An example use-case for the extended resources could be based on a hook which creates a label for the node SGX EPC memory section size. By giving the name of that label in the -resource-labels
flag, that value will then turn into an extended resource of the node, allowing PODs to request that resource and the Kubernetes scheduler to schedule such PODs to only those nodes which have a sufficient capacity of said resource left.
Similar to labels, the default namespace feature.node.kubernetes.io
is automatically prefixed to the extended resource, if the promoted label doesn't have a namespace.
Example usage of the command line arguments, using a new namespace: nfd-master -resource-labels=my_source-my.feature,sgx.some.ns/epc -extra-label-ns=sgx.some.ns
The above would result in following extended resources provided that related labels exist:
sgx.some.ns/epc: <label value>
feature.node.kubernetes.io/my_source-my.feature: <label value>