Developer guide

Table of contents

  1. Building from source
    1. Download the source code
    2. Docker build
    3. Docker multi-arch builds with buildx
    4. Deployment
    5. Building locally
    6. Customizing the build
    7. Testing
  2. Running locally
    1. NFD-Master
    2. NFD-Worker
    3. NFD-Topology-Updater
  3. Documentation

Building from source

Download the source code

git clone https://github.com/kubernetes-sigs/node-feature-discovery
cd node-feature-discovery

Docker build

Build the container image

See customizing the build below for altering the container image registry, for example.

make

Push the container image

Optional, this example with Docker.

docker push <IMAGE_TAG>

Docker multi-arch builds with buildx

The default set of architectures enabled for mulit-arch builds are linux/amd64 and linux/arm64. If more architectures are needed one can override the IMAGE_ALL_PLATFORMS variable with a comma separated list of OS/ARCH tuples.

Build the manifest-list with a container image per arch

make image-all

Currently docker does not support loading of manifest-lists meaning the images are not shown when executing docker images, see: buildx issue #59.

Push the manifest-list with container image per arch

make push-all

The resulting container image can be used in the same way on each arch by pulling e.g. node-feature-discovery:v0.10.0 without specifying the architechture. The manifest-list will take care of providing the right architecture image.

Change the job spec to use your custom image (optional)

To use your published image from the step above instead of the k8s.gcr.io/nfd/node-feature-discovery image, edit image attribute in the spec template(s) to the new location (<registry-name>/<image-name>[:<version>]).

Deployment

The yamls makefile generates a kustomization.yaml matching your locally built image and using the deploy/overlays/default deployment. See build customization below for configurability, e.g. changing the deployment namespace.

K8S_NAMESPACE=my-ns make yamls
kubectl apply -k .

You can use alternative deployment methods by modifying the auto-generated kustomization file. For example, deploying worker and master in the same pod by pointing to deployment/overlays/default-combined.

Building locally

You can also build the binaries locally

make build

This will compile binaries under bin/

Customizing the build

There are several Makefile variables that control the build process and the name of the resulting container image. The following are targeted targeted for build customization and they can be specified via environment variables or makefile overrides.

Variable Description Default value
HOSTMOUNT_PREFIX Prefix of system directories for feature discovery (local builds) / (local builds) /host- (container builds)
IMAGE_BUILD_CMD Command to build the image docker build
IMAGE_BUILD_EXTRA_OPTS Extra options to pass to build command empty
IMAGE_BUILDX_CMD Command to build and push multi-arch images with buildx DOCKER_CLI_EXPERIMENTAL=enabled docker buildx build –platform=${IMAGE_ALL_PLATFORMS} –progress=auto –pull
IMAGE_ALL_PLATFORMS Comma seperated list of OS/ARCH tuples for mulit-arch builds linux/amd64,linux/arm64
IMAGE_PUSH_CMD Command to push the image to remote registry docker push
IMAGE_REGISTRY Container image registry to use k8s.gcr.io/nfd
IMAGE_TAG_NAME Container image tag name <nfd version>
IMAGE_EXTRA_TAG_NAMES Additional container image tag(s) to create when building image empty
K8S_NAMESPACE nfd-master and nfd-worker namespace node-feature-discovery
KUBECONFIG Kubeconfig for running e2e-tests empty
E2E_TEST_CONFIG Parameterization file of e2e-tests (see example) empty
OPENSHIFT Non-empty value enables OpenShift specific support (currently only effective in e2e tests) empty
BASE_IMAGE_FULL Container base image for target image full (–target full) debian:buster-slim
BASE_IMAGE_MINIMAL Container base image for target image minimal (–target minimal) gcr.io/distroless/base

For example, to use a custom registry:

make IMAGE_REGISTRY=<my custom registry uri>

Or to specify a build tool different from Docker, It can be done in 2 ways:

  1. via environment

     IMAGE_BUILD_CMD="buildah bud" make
    
  2. by overriding the variable value

     make  IMAGE_BUILD_CMD="buildah bud"
    

Testing

Unit tests are automatically run as part of the container image build. You can also run them manually in the source code tree by simply running:

make test

End-to-end tests are built on top of the e2e test framework of Kubernetes, and, they required a cluster to run them on. For running the tests on your test cluster you need to specify the kubeconfig to be used:

make e2e-test KUBECONFIG=$HOME/.kube/config

Running locally

You can run NFD locally, either directly on your host OS or in containers for testing and development purposes. This may be useful e.g. for checking features-detection.

NFD-Master

When running as a standalone container labeling is expected to fail because Kubernetes API is not available. Thus, it is recommended to use -no-publish command line flag. E.g.

$ export NFD_CONTAINER_IMAGE=k8s.gcr.io/nfd/node-feature-discovery:v0.10.1
$ docker run --rm --name=nfd-test ${NFD_CONTAINER_IMAGE} nfd-master -no-publish
2019/02/01 14:48:21 Node Feature Discovery Master <NFD_VERSION>
2019/02/01 14:48:21 gRPC server serving on port: 8080

NFD-Worker

In order to run nfd-worker as a "stand-alone" container against your standalone nfd-master you need to run them in the same network namespace:

$ docker run --rm --network=container:nfd-test ${NFD_CONTAINER_IMAGE} nfd-worker
2019/02/01 14:48:56 Node Feature Discovery Worker <NFD_VERSION>
...

If you just want to try out feature discovery without connecting to nfd-master, pass the -no-publish flag to nfd-worker.

NOTE Some feature sources need certain directories and/or files from the host mounted inside the NFD container. Thus, you need to provide Docker with the correct --volume options in order for them to work correctly when run stand-alone directly with docker run. See the default deployment for up-to-date information about the required volume mounts.

NFD-Topology-Updater

In order to run nfd-topology-updater as a "stand-alone" container against your standalone nfd-master you need to run them in the same network namespace:

$ docker run --rm --network=container:nfd-test ${NFD_CONTAINER_IMAGE} nfd-topology-updater
2019/02/01 14:48:56 Node Feature Discovery Topology Updater <NFD_VERSION>
...

If you just want to try out feature discovery without connecting to nfd-master, pass the -no-publish flag to nfd-topology-updater.

NOTE:

NFD topology updater needs certain directories and/or files from the host mounted inside the NFD container. Thus, you need to provide Docker with the correct --volume options in order for them to work correctly when run stand-alone directly with docker run. See the template spec for up-to-date information about the required volume mounts.

PodResource API is a prerequisite for nfd-topology-updater. Preceding Kubernetes v1.23, the kubelet must be started with the following flag: --feature-gates=KubeletPodResourcesGetAllocatable=true. Starting Kubernetes v1.23, the GetAllocatableResources is enabled by default through KubeletPodResourcesGetAllocatable feature gate.

Documentation

All documentation resides under the docs directory in the source tree. It is designed to be served as a html site by GitHub Pages.

Building the documentation is containerized in order to fix the build environment. The recommended way for developing documentation is to run:

make site-serve

This will build the documentation in a container and serve it under localhost:4000/ making it easy to verify the results. Any changes made to the docs/ will automatically re-trigger a rebuild and are reflected in the served content and can be inspected with a simple browser refresh.

In order to just build the html documentation run:

make site-build

This will generate html documentation under docs/_site/.